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Grade Five

Mathematics Instruction 
In grade five, instructional time should focus on three critical areas: (1) developing fluency with 
addition and subtraction of fractions, and developing understanding of the multiplication of fractions 
and of division of fractions in limited cases (unit fractions divided by whole numbers and whole 
numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal 
fractions into the place value system and developing understanding of operations with decimals to 
hundredths, and developing fluency with whole number and decimal operations; and (3) developing 
an understanding of volume; solving problems using the coordinate plane. 

Prior to grade five, students learn strategies for multiplication and division, develop an understanding 
of the structure of the place value system, and apply an understanding of fractions to addition and 
subtraction of fractions with like denominators. Students also explore multiplying a whole number by 
a fraction. Students gain an understanding that geometric figures can be analyzed and classified based 
on the properties of the figures and focus on different measurements, including angle measures. The 
expectation of fluently adding and subtracting whole numbers within 1,000,000 using the standard 
algorithm develops as students progress through the West Virginia College and Career Readiness 
Standards, beginning as early as kindergarten (adapted from Charles A. Dana Center 2012).

Mathematical Fluency 
Students demonstrate fluency of mathematical standards when they exhibit the following:

	» Accuracy – ability to produce an accurate answer
	» Efficiency – ability to choose an appropriate expedient strategy for a specific computation 

problem
	» Flexibility – ability to use number relationships with ease in computation.

West Virginia College- and Career-Readiness Standards for Mathematics 
The WV College- and Career-Readiness Standards for Mathematics (WVBE Policy 2520.2B) emphasize 
key content, skills, and practices at each grade level and support three major principles.

	» Instruction is focused on grade level standards.
	» Instruction should be attentive to learning across grades and to linking major topics within 

grades.
	» Instruction should develop conceptual understanding, procedural skill and fluency, and 

application. 
 
Grade level examples of these three major principles are indicated throughout this document.
 
Cluster headings can be viewed as the most effective way to communicate the focus and coherence of 
the standards. The instructional focus must be based on the depth of the ideas, the time needed to 
master the clusters, and their importance to future mathematics or the later demands of preparing for 
college and careers.
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Teachers and administrators alike should note that the standards are not topics to be checked off 
after being covered in isolated units of instruction; rather, they provide content to be developed 
throughout the school year through rich instructional experiences presented in a coherent manner. 
West Virginia College- and Career-Readiness Standards for Mathematics are learning goals for 
students that must be mastered by the end of the grade five academic year in order for students to be 
prepared for the mathematics content at the grade six level. The Mathematical Habits of Mind are the 
behaviors and dispositions of mathematics and should be integrated into every mathematics lesson 
for all students and are part of the comprehensive approach to early and elementary learning per 
WVBE Policy, 2510, Assuring Quality of Education: Regulations for Education Programs.

Connecting Mathematical Habits of Mind and Content
The Mathematical Habits of Mind (MHM) are developed throughout each grade and, together with 
the West Virginia College- and Career-Readiness Standards for Mathematics, prescribe that students 
experience mathematics as a useful and logical subject that adds value and meaning to daily 
interactions in their lives. The Mathematical Habits of Mind represent a picture of what it looks like 
for students to understand and do mathematics in the classroom and should be integrated into every 
mathematics lesson for all students, and part of the comprehensive approach to early and elementary 
learning per WVBE Policy, 2510, Assuring Quality of Education: Regulations for Education Programs.

Although the description of the Mathematical Habits of Mind remains the same at all grade
levels, the way these standards look as students engage with and master new and more advanced 
mathematical ideas does change. The following chart presents examples of how the Mathematical 
Habits of Mind may be integrated into tasks appropriate for students in grade five.

Mathematical Habits of Mind—Explanation and Examples for Grade Five

Mathematical Habits 
of Mind Explanation and Examples

MHM1
Make sense of 
problems and 
persevere in solving 
them.

In grade five, students solve problems by applying their understanding 
of operations with whole numbers, decimals, and fractions that include 
mixed numbers. They solve problems related to volume and measurement 
conversions. Students seek the meaning of a problem and look for efficient 
ways to represent and solve it. For example, “Sonia had 2 1

3  sticks of gum.
She promised her brother that she would give him 1

2  of a stick of gum. 
How much will she have left after she gives her brother the amount she 
promised?” Teachers can encourage students to check their thinking by 
having students ask themselves questions such as these: What is the most 
efficient way to solve the problem? Does this make sense? Can I solve the
problem in a different way?
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Mathematical Habits 
of Mind Explanation and Examples

MHM2
Reason abstractly and 
quantitatively.

Students recognize that a number represents a specific quantity. They 
connect quantities to written symbols and create logical representations of 
problems, considering appropriate units and the meaning of quantities. They 
extend this understanding from whole numbers to their work with fractions 
and decimals. Teachers can support student reasoning by asking questions 
such as these: What do the numbers in the problem represent? What is the 
relationship of the quantities? Students write simple expressions that record 
calculations with numbers and represent or round numbers using place-
value concepts. For example, students use abstract and quantitative thinking 
to recognize, without calculating the quotient, that 0.5 × (300 ÷ 15) is 1

2  of 
(300 ÷ 15).

MHM3
Construct viable 
arguments and 
critique the reasoning 
of others.

In grade five, students may construct arguments by using visual models 
such as objects and drawings. They explain calculations based upon models, 
properties of operations, and rules that generate patterns. They demonstrate 
and explain the relationship between volume and multiplication. They refine 
their mathematical communication skills as they participate in mathematical 
discussions involving questions such as How did you get that? and Why 
is that true? They explain their thinking to others and respond to others’ 
thinking.

Students use various strategies to solve problems, and they defend and 
justify their work to others. For example: “Two after-school clubs are having 
pizza parties. The teacher will order 3 pizzas for every 5 students in the math 
club and 5 equally sized pizzas for every 8 students on the student council. 
How much pizza will each student get at the respective parties?
If a student wants to attend the party where she will get the most pizza 
(assuming the pizza is divided equally among the students at the parties), 
which party should she attend?”

MHM4 
Model with 
mathematics.

Grade-five students experiment with representing problem situations in 
multiple ways—for example, by using numbers, mathematical language, 
drawings, pictures, objects, charts, lists, graphs, and equations. Teachers 
might ask, “How would it help to create a diagram, chart, or table?” or “What 
are some ways to represent the quantities?” Students need opportunities to 
represent problems in various ways and explain the connections. Students 
in grade five evaluate their results in the context of the situation and explain 
whether answers to problems make sense. They evaluate the utility of 
models they see and draw and can determine which models are the most 
useful and efficient for solving particular problems.

MHM5 
Use appropriate tools 
strategically.

Students consider available tools, including estimation, and decide which 
tools might help them solve mathematical problems. For instance, students 
may use unit cubes to pack a rectangular prism and then use a ruler to 
measure the dimensions to find a pattern for volume using the lengths of 
the sides. They use graph paper to accurately create graphs, solve problems, 
or make predictions from real-world data.
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Mathematical Habits 
of Mind Explanation and Examples

MHM6 
Attend to precision.

Students continue to refine their mathematical communication skills by 
using clear and precise language in their discussions with others and in 
their own reasoning. Teachers might ask, “How do you know your solution 
is reasonable?” Students use appropriate terminology when they refer to 
expressions, fractions, geometric figures, and coordinate grids. Teachers 
might ask, “What symbols or mathematical notations are important in this 
problem?” Students are careful to specify units of measure and state the 
meaning of the symbols they choose. For instance, to determine the volume
of a rectangular prism, students record their answers in cubic units.

MHM7 
Look for and make 
use of structure.

Students look closely to discover a pattern or structure. For instance, they 
use properties of operations as strategies to add, subtract, multiply, and 
divide with whole numbers, fractions, and decimals. They examine numerical 
patterns and relate them to a rule or a graphical representation. Teachers 
might ask, “How do you know if something is a pattern?” or “What do you 
notice when?”

MHM8 
Look for and express 
regularity in repeated 
reasoning.

Students in grade five use repeated reasoning to understand algorithms 
and make generalizations about patterns. Students connect place value 
and their prior work with operations to understand and use algorithms to 
extend multi-digit division from one-digit to two-digit divisors and to fluently 
multiply multi-digit whole numbers. They use various strategies to perform 
all operations with decimals to hundredths, and they explore operations 
with fractions with visual models and begin to formulate generalizations.
Teachers might ask, “Can you explain how this strategy works in other
situations?” or “Is this always true, sometimes true, or never true?”

Adapted from Arizona Department of Education (ADE) 2010 and North Carolina Department of Public Instruction (NCDPI) 2013b.

Standards-Based Learning at Grade Five
The following narrative is organized by domain from the WV College- and Career-Readiness Standards 
for Mathematics in grade five and highlights some necessary foundational skills from previous grade 
levels. It also provides exemplars to explain the content standards, highlight connections to the 
Mathematical Habits of Mind (MHM), and demonstrates the importance of developing conceptual 
understanding, procedural skill and fluency, and application.
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Domain: Operations and Algebraic Thinking
Students in grade five begin working more formally with expressions. This work is fundamental in 
preparing students for the progression of expressions and equations that occurs in grades six through 
eight standards.

Operations and Algebraic Thinking
Write and interpret numerical expressions.
M.5.1 
Use parentheses or brackets in numerical expressions and evaluate expressions with these symbols.

M.5.2 
Write simple expressions that record calculations with numbers and interpret numerical expressions 
without evaluating them (e.g., express the calculation “add 8 and 7, then multiply by 2” as 2 × (8 + 7); 
recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the 
indicated sum or product).

In grade three, students begin to use the conventional order of operations (i.e., multiplication and 
division are done before addition and subtraction). In grade five, students build on this work to write, 
interpret, and evaluate simple numerical expressions, including those that contain parentheses, or 
brackets, (ordering symbols) [M.5.1–2]. Students need opportunities to describe numerical expressions 
without evaluating them. For example, they express the calculation “add 8 and 7, then double” as (8 + 
7) × 2. Without calculating a sum or product, they recognize that 3 × (18932 + 921) is three times as large 
as 18932 + 921. Students begin to think about numerical expressions in anticipation of their later work 
with variable expressions—for example, three times an unknown length is 3 × L (adapted from ADE 
2010 and Kansas Association of Teachers of Mathematics [KATM] 2012, 5th Grade Flipbook).

Students need experiences with multiple expressions to understand when and how to use ordering 
symbols. Instruction in the order of operations should be carefully sequenced from simple to more 
complex problems. In grade five, this work should be viewed as exploratory rather than for attaining 
mastery; for example, expressions should not contain nested grouping symbols, and they should be no 
more complex than the expressions found in an application of the associative or distributive property, 
such as (8 + 27) + 2 or (6 × 30) + (6 × 7).

Students can begin by using these symbols with whole numbers and then expand the use to decimals 
and fractions.
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Examples: Order of Operations-Use of Grouping Symbols M.5.1

Problems Answers
(28 + 16) ÷ 4 The answer is 11. Note: If students arrive at 32 as their answer, they may have 

found 28 + (16 ÷ 4).
12 - (2 × 0.4) The answer is 11.2. Note: If students arrive at 4 as their answer, they may have 

found (12 – 2) × 0.4.

(2 + 3) × (1.5 - 0.5) The answer is 5. Note: If students arrive at 6 as their answer, they may have 
found 2 + 3 × 1.5 – 0.5, which yields 6 (based on order of operations without the 
parentheses).

6 - ( 1
2 + 1

3 ) The answer is 5 1
6 . Note: If students arrive at 5 5

6  as their answer, they may have 
found 6 - 1

2  + 1
3  (based on order of operations without the parentheses).

To further develop their understanding of grouping symbols and facility with operations, students 
place grouping symbols in equations to make the equations true or compare expressions that are 
grouped differently.

Examples: Grouping Symbols in Equations M.5.1

Problems Answers
Use grouping symbols to make the equation 
true: 15 - 7 - 2 = 10

15 - (7 - 2) = 10

Use grouping symbols to make the equation 
true: 3 × 125 ÷ 25 + 7 = 22

3 × (125 ÷ 25) + 7 = 22

Compare 3 × 2 + 5 and 3 × (2 + 5) 3 × 2 + 5 = 11
3 × (2 + 5) = 21

Compare 15 - 6 + 7 and 15 - (6 + 7) 15 - 6 + 7 = 16
15 - (6 + 7) = 2
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Common Misconceptions   
	» Students may believe that the order in which a problem with mixed operations is written is 

the correct order for solving the problem. The use of the mnemonic phrase “Please Excuse My 
Dear Aunt Sally” to remember the order of operations (Parentheses, Exponents, Multiplication, 
Division, Addition, Subtraction) may mislead students to always perform multiplication before 
division and addition before subtraction. To correct this thinking, students need to understand 
that they should work with the innermost grouping symbols first and that some operations are 
done before others, even if grouping symbols are not included. Multiplication and division are 
done at the same time (in order, from left to right). Addition and subtraction are also done at 
the same time (in order, from left to right).

	» Students need a lot of experience with writing multiplication in different ways. Multiplication 
may be indicated with a raised dot (e.g., 4⋅5), a raised cross symbol (e.g., 4 × 5), or parentheses 
(e.g., 4(5) or (4)(5)). Note that the raised cross symbol is not the same as the letter x and may 
be confused with the variable “x,” so care should be taken when writing or typing this symbol. 
Students need to be exposed to all three notations and should be challenged to understand 
that all are useful. This is an appropriate time to begin to transition students from the use of x 
as a multiplication symbol. Students also need help and practice remembering the convention 
that we write a rather than 1 × a or 1a, especially in expressions such as a + 3a. (1a = a is an 
example of the Multiplicative Identity Property.)

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Understanding patterns is fundamental to algebraic thinking. Students extend their grade four pattern 
work to include two numerical patterns that can be related, and they examine these relationships 
within sequences of ordered pairs.

Operations and Algebraic Thinking
Analyze patterns and relationships.
M.5.3 
Generate two numerical patterns using two given rules.  Identify apparent relationships between 
corresponding terms.  Form ordered pairs consisting of corresponding terms from the two patterns 
and graph the ordered pairs on a coordinate plane (e.g., given the rule “Add 3” and the starting 
number 0 and given the rule “Add 6” and the starting number 0, generate terms in the resulting 
sequences and observe that the terms in one sequence are twice the corresponding terms in the 
other sequence; explain informally why this is so).

Students graph the ordered pairs to further examine the resulting pattern(s) [M.5.3]. This work 
prepares students for studying proportional relationships and functions in middle school and is a 
precursor to work with slope and linear relationships (M.5.23–24).
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Example M.5.3
Create two sequences of numbers, both starting from 0, but one generated with a “+ 3” pattern, and 
the other with a “+ 6” pattern.

a.	How are the sequences related to each other?
b.	Graph the sequences together as ordered pairs, with the numbers in the first sequence (A) as 

the x-coordinate and the numbers in the second sequence (B) as the y-coordinate.

How are the sequences related based on the graph?
Solution:
Starting with 0, students create two sequences of numbers.
Sequence A: 0 3 6 9 12 15 …
Sequence B: 0 6 12 18 24 30 ...

a.	Students may notice that each term in sequence B is two times the corresponding term in 
sequence A. Organizing the sequences in a table (as shown above) can help students see the 
pattern more clearly. Students can explain the relationship between the sequences in several 
ways—for instance, by using the distributive property: 6 + 6 + 6 = 2 × (3 + 3 + 3).

b.	The ordered pairs come easily from the table layout: (0,0); (3,6); (6,12); (9,18); and so on. The 
graph is shown.

c.	 Students may see that the second coordinate of each point is two times the first coordinate—a 
natural observation based on the way the sequences were created. They may also see other 
features of the graph, such as the “+ 3” pattern moving in the x direction and the “+ 6” pattern 
moving in the y direction. (This is fully explored in grades six through eight).

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Common Misconceptions   
	» Students often reverse the order of the x and y in an ordered pair when plotting them on a 

coordinate plane: they mistakenly count up first on the y-axis and then count over on the 
x-axis.
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Domain: Number and Operations in Base Ten
In grade five, critical areas of instruction include integrating decimal fractions into the place value 
system, developing an understanding of operations with decimals to hundredths, and working toward 
fluency with whole number and decimal operations.

Number and Operations in Base Ten
Understand the place value system
M.5.4
Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it 
represents in the place to its right and 1/10 of what it represents in the place to its left.

M.5.5
Explain how the value of a multi-digit number, including decimals, is changed when the number is 
multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10.

M.5.6
Read, write, and compare decimals to thousandths. 

a.	Read and write decimals to thousandths using base-ten numerals, number names and 
expanded form (e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000)). 

b.	Compare two decimals to thousandths based on meanings of the digits in each place, using >, 
= and < symbols to record the results of comparisons.

M.5.7
Use place value understanding to round multi-digit numbers, including decimals, to any place.

Students extend their understanding of the base-ten system from whole numbers to decimals, 
focusing on the relationship between adjacent place values, how numbers compare, and how numbers 
round for decimals to thousandths. Before considering the relationship of decimal fractions, students 
reason that in multi-digit numbers, including decimals, a digit in one place represents 10 times what it 
represents in the place to its right and 1

10  of what it represents in the place to its left (M.5.4).



10

Example M.5.3
Through exploration with base ten blocks or snap cubes, students can concretely explore the 
relationship between place values. They may be able to name place values, but this is not an 
indication that they understand the relationship between them. For example, a student may 
know the difference between the two 5s in the number 4554 (i.e., that they represent 500 and 50, 
respectively), but the further relationship that 500 = 50 × 10 and 50 = 500 × ( 1

10 ) needs to be explored 
and made explicit.

To extend this understanding of place value to their work with decimals, students could use a model 
of one unit and cut it into 10 equal pieces, shade in, or describe 1

10  of that model using fractional 
language:
“This is 1 out of 10 equal parts. So it is 1

10 . I can write this using 1
10  or 0.1.”

Students repeat the process by finding 1
10  of 1

10  (i.e., dividing 1
10  into 10 equal parts to arrive at 1

100 or 
0.01) and explain their reasoning: “0.01 is 1

10  of and therefore is  1
100 of the whole unit.”

Simple 10 × 10 grids can be particularly useful for exploring these ideas. Also, since the metric system 
is a base-ten system of measurement, working with simple metric length measurements and rulers 
can support this understanding (see standard M.5.18). In general, students are led to recognize the 
following pattern in a multi-digit number:

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Money may also be used to support place value understanding. For example, 1
10  of a dollar is a dime 

and 1
10  of a dime is a penny therefore 1

10  × 1
10  = 1

100.

Students use place value to understand that multiplying a decimal by 10 results in the decimal point 
appearing one place to the right (e.g., 10 × 4.2 = 42), since the result is 10 times larger than the original 
number; similarly, multiplying a decimal by 100 results in the decimal point appearing two places to 
the right, because the number is 100 times larger. Students also make the connection that dividing 
by 10 results in the decimal point appearing one place to the left (e.g., 4 ÷ 10 = 0.4), since the number 
is 10 times smaller (or 1

10  of the original), and dividing a number by 100 results in the decimal point 
appearing two places to the left because the number is 100 times smaller (or 1

100 of the original).

Instructional Focus
The extension of the place value system from whole numbers to decimals is a major accomplishment 
involving understanding and skill with base-ten units and fractions (M.5.4). As students understand 
that in a multi-digit number, a digit in one place represents   of what it represents in the place to its 
left (M.5.4), they also reinforce their understanding of multiplying a quantity by a fraction (M.5.14)
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Powers of 10 is a fundamental aspect of the base ten system. Students extend their understanding of 
place value to explain patterns in the number of zeros of the product when multiplying a number by 
powers of 10. The use of whole-number exponents to denote powers of 10 (M.5.5) is new to grade five 
students. The understanding of place value and powers of 10 is foundational to the introduction of 
scientific notation in grade 8.

Example: Reasoning About Patterns to Explore the Properties of Exponents   M.5.5
Students might write:
36 × 10 = 36 × 101 = 360
36 × 10 × 10 = 36 × 102 = 3600
36 × 10 × 10 × 10 = 36 × 103 = 36,000
36 × 10 × 10 × 10 × 10 = 36 × 104 = 360,000

Students might think or say:
“I noticed that every time I multiplied by 10, I placed a zero at the end of the number. That makes 
sense because each digit’s value became 10 times larger. To make a digit 10 times larger, I have to 
move it one place value to the left. When I multiplied 36 by 10, the 30 became 300. The 6 became 60 
(or the 36 became 360).”
Adapted from ADE 2010.

Student Misconception   
	» Student understanding may stop at “I noticed that every time I multiplied by 10, I placed a zero 

at the end of the number” and not include an understanding of place value. In multiplying 
4.6 by 10, students write 4.60 instead of 46. Similarly, students may incorrectly think that the 
decimal point, rather than the digits, is shifting.

Instructional Focus
Students can use their understanding of the structure of whole numbers to generalize this 
understanding to decimals (MHM7) and explain the relationship between the numerals (MHM6) 
[adapted from Charles A. Dana Center 2012].

Students build on understandings from grade four to read, write, and compare decimals to 
thousandths (M.5.6). They connect this work with prior understanding of decimal notations for 
fractions and addition of fractions with denominators of 10 and 100. Students use concrete models 
or drawings and number lines to extend this understanding of decimals to the thousandths place. 
Models may include base ten blocks, place value charts, grids, pictures, math drawings, manipulatives, 
and examples created through technology. They read decimals using fractional language and write 
decimals in fractional form, as well as in expanded notation. This investigation leads them to 
understand the equivalence of decimals (e.g., 0.8 = 0.80 = 0.800).
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Example: Equivalent Forms of 0.72 M.5.6a

Equivalent Forms of 0.72 

72
100

70
100+

2
100

7
10 +

2
100

720
1000 0.720 0.70 + 0.02 + 0.000

7 x 1
10  + 2 x 1

100 7 x 1
10  + 2 x 1

100 + 0 x 720
1000 0.7 + 0.02

Adapted from KATM 2012, 5th Grade Flipbook.

Base ten blocks can be a powerful tool for seeing equivalent representations. For instance, if a “flat” 
is used to represent 1 (the whole or unit), then a “stick” represents 1

10 , and a small “cube” represents 
1

100. As shown below, students can be challenged to make sense of a number like 0.23 as being 
represented by both 2

10 + 3
10  and 23

100:

if   represents 1, then  represents 1
10  and  represents 1

100.

Student: “Well, I see that the 20 hundredths in the picture on the right can be grouped into 2 sets 
of 10 hundredths. That means these 2 groups represent 2 tenths, or 2

10 . There are 3 hundredths left, 
so altogether there are 2

10 + 3
100.”

Students need to understand the size of decimal numbers and relate them to common benchmarks 
such as 0, 0.5 (or equivalent values such as 0.50 and 0.500), and 1. Comparing tenths to tenths, 
hundredths to hundredths, and thousandths to thousandths is simplified if students use their 
understanding of fractions to compare decimals.
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Example                                               M.5.6b
Comparing 0.207 to 0.26, a student might think, “Both numbers have 2 tenths, so I need to compare 
the hundredths. The second number has 6 hundredths, and the first number has no hundredths, so 
the second number must be larger.”

While writing fractions, another student might think, “I know that 0.207 is 207 thousandths [and may 
write 720

1000], and 0.26 is 26 hundredths [and may write 26
100], but I can also think of it as 260 thousandths 

( 260
1000). So, 260 thousandths is more than 207 thousandths.”

For students who are not able to read, write, and represent multi-digit numbers, working with decimals 
will be challenging. Teachers can use base-ten blocks and money to provide meaning for decimals. For 
example, dimes can represent tenths and pennies represent hundredths.
 
Some students may be confused when reading decimals because whole numbers are read based on 
the place value of the digit farthest to the left of the decimal (e.g., 462 is read as four hundred sixty-
two). However, decimal numbers are read as whole numbers based on the place value of the digit 
farthest to the right of the decimal (e.g., 0.246 is read as two hundred forty-six thousandths). Decimals 
are read as fractions: the number is read as the numerator and then the denominator is expressed.

Common Misconceptions   
	» Some students relate comparing decimals with the idea “the longer the number, the greater the 

number.” With whole numbers, a five-digit number is always greater than a one-, two-, three-, or 
four-digit number. However, when comparing decimals, a number with one decimal place may 
be greater than a number with two or three decimal places.

Adapted from KATM 2012, 5th Grade Flipbook.

Students use place value understanding to round decimals to any place (M.5.7). When rounding a 
decimal to a given place, students may identify two possible answers and use their understanding of 
place value to compare the given number to the possible answers.

Example: Round 14.235 to the nearest tenth.                                         M.5.7
Students can read 14.235 as “14 and 235 thousandths.” Since they are rounding to the nearest tenth, 
they are most likely rounding to either 14.2 or 14.3—that is, “14 and 200 thousandths” or “14 and 300 
thousandths” (14.200 and 14.300). Students then see that they can momentarily disregard the 14 and 
focus on rounding 235 (thousandths) to the nearest hundred. In that case, since 235 would round 
down to 200, we would get 14.200 or 14.2 rounded to the nearest tenth.

14.2 14.3

Students can use benchmark numbers (e.g., 0, 0.5, 1, and 1.5) to support similar work.
Adapted from KATM 2012, 5th Grade Flipbook.
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Generally, the West Virginia College- and Career-Readiness Standards for Mathematics distinguish 
between strategies and algorithms. In the present discussion, the standard algorithm refers to 
multiplying numbers digit by digit and recording the products piece by piece. Note that the method of 
recording the algorithm is not the same as the algorithm itself, in the sense that the “partial products” 
method, which lists every digit-by-digit product separately, is a completely valid recording method for 
the standard algorithm. Ultimately, the standards call for understanding the standard algorithm in 
terms of place value, and this should be the most important goal for instruction. In grades three and 
four, students used various strategies to multiply. In grade five, students fluently multiply multi-digit 
whole numbers using the standard algorithm (M.5.8).

Once understanding occurs, the standard algorithm may be used for efficiency.

Number and Operations in Base Ten
Perform operations with multi-digit whole numbers and with decimals to hundredths.
M.5.8
Fluently (efficiently and accurately) multiply multi-digit whole numbers using the standard algorithm.

M.5.9
Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit 
divisors, using strategies based on place value, the properties of operations, and/or the relationship 
between multiplication and division.  Illustrate and explain the calculation by using equations, 
rectangular arrays, area models, and/or partial quotients.

M.5.10
Add, subtract, multiply and divide decimals to hundredths, using concrete models or drawings and 
strategies based on place value, properties of operations, and/or the relationship between related 
operations, relate the strategy to a written method and explain the reasoning used.

FLUENCY
West Virginia College- and Career-Readiness Standards for Mathematics (K–6) set expectations 
for fluency in computation (e.g., “Fluently multiply multi-digit whole numbers using the standard 
algorithm” [M.5.8]). Such standards are culminations of progressions of learning, often spanning 
several grades, involving conceptual understanding, thoughtful practice, and extra support 
where necessary. The word fluent is used in the standards to mean efficiently and accurately and 
possessing the ability to use certain facts and procedures with enough facility that using such 
knowledge does not slow down or derail the problem solver as he or she works on more complex 
problems. Procedural fluency requires skill in carrying out procedures flexibly, accurately, efficiently, 
and appropriately. Developing fluency in each grade may involve a mixture of knowing some answers, 
knowing some answers from patterns, and knowing some answers through the use of strategies.
Adapted from UA Progressions Documents 2011a.

In previous grades, students built a conceptual understanding of multiplication with whole numbers 
as they applied multiple strategies to compute and solve problems. Students can continue to use 
different strategies and methods learned previously—as long as the methods are efficient—but they 
must also understand and be able to use the standard algorithm.
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Example: Find the product of 123 × 34.                                           M.5.8
When students apply the standard algorithm, they decompose 34 into 30 + 4. Then they multiply 
123 by 4, the value of the number in the ones place, and multiply 123 by 30, the value of the 3 in the 
tens place, and add the two products. The ways in which students are taught to record this method 
may vary, but all methods should emphasize the place value nature of the algorithm. For example, a 
student might write:

Note that a further decomposition of 123 into 100 + 20 + 3 and recording of the partial products 
would also be acceptable.
Adapted from ADE 2010.

In grade five, students use various strategies to extend division to include quotients of whole numbers 
with up to four-digit dividends and two-digit divisors, and they illustrate and explain calculations 
by using equations, rectangular arrays, and/or area models (M.5.9). When the two-digit divisor is a 
familiar number, students might use strategies based on place value understanding.

Example 1: Find the quotient 2682 ÷ 25.                                           M.5.9
	» Using expanded notation: 2682 ÷ 25 = (2000 + 600 + 80 + 2) ÷ 25
	» Using an understanding of the relationship between 100 and 25, a student might think:

•	 “I know that 100 divided by 25 is 4, so 200 divided by 25 is 8 and 2000 divided by 25 is 80.
•	 Since 100 divided by 25 is 4, then 600 divided by 25 is 6 times as much or 6 x 4 = 24.
•	 Since 3 x 25 is 75, I know that 80 divided by 25 is 3, with 5 left over. [Note that a student might 

divide into 82 and not 80.]
•	 I can’t divide 2 by 25, so 2 plus the 5 leaves a remainder of 7.
•	 80 + 24 + 3 = 107. So, the answer is 107, with a remainder of 7 or 107 .”

	» Using an equation that relates division to multiplication, 25 × n = 2682, a student might estimate 
the answer to be slightly larger than 100 by recognizing that 25 × 100 = 2500.

Adapted from ADE 2010.

The above example is a recording of student thinking. While longer than the traditional algorithm, 
conceptual understanding of division is evident.

To help students understand the use of place value when dividing with two-digit divisors, teachers can 
begin with simpler examples, such as having students divide 150 by 30; clearly, the answer is 5, since 
this is 15 tens divided by 3 tens. However, when dividing 1500 by 30, students need to think of this 
as 150 tens divided by 3 tens, which is 50. This illustrates why the 5 would go in the tens place of the 
quotient when using the division algorithm.
 
When the divisor is less familiar, students can use strategies based on area (as shown in the following 
example).
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Example 2: Find the quotient 9984 ÷ 64                                         M.5.9
An area model for division is shown below. As the student uses the area model, he or she keeps 
track of how much of the 9984 is left to divide.

Area Model: Recording:

Therefore, the quotient is 100 + 50 + 5 + 1 = 156.
Adapted from ADE 2010.

The extension from one-digit divisors to two-digit divisors is a major milestone along the way to 
reaching fluency with the standard algorithm in grade six (M.5.9). Division strategies in grade five 
extend the methods learned in grade four to two-digit divisors. Students continue to break the 
dividend into base ten units and find the quotient place by place, starting from the highest place. They 
illustrate and explain their calculations by using equations, rectangular arrays, and/or area models. 
Estimating the quotients is a difficult new aspect of dividing by a two-digit number. Even if students 
round appropriately, the resulting estimate may need to be adjusted up or down. It is important to 
note that the West Virginia College- and Career-Readiness Standards introduce the standard algorithm 
for division in grade six.

Instructional Focus
When students break divisors and dividends into sums of multiples of base-ten units (M.5.9), they 
also develop important mathematical practices such as how to see and make use of structure 
(MHM7) and attend to precision (MHM6).

In grade five, students expand on their grade four work of comparing decimals and begin to add, 
subtract, multiply, and divide decimals to hundredths (M.5.10). They focus on reasoning about 
operations with decimals by using concrete models, math drawings, various strategies, and 
explanations. They also extend to decimal values the concrete models and written methods they 
developed for whole numbers in grades one through four. Students might estimate answers based on 
their understanding of operations and the value of the numbers (MHM7, MHM8).



17

Examples: Estimating                                           M.5.10
3.6 + 1.7
A student can make good use of rounding to estimate that since 3.6 rounds up to 4 and 1.7 rounds up 
to 2, the answer should be close to 4 + 2 = 6.

5.4 – 0.8
Students can again round and argue that since 5.4 rounds down to 5 and 0.8 rounds up to 1, the 
answer should be close to 5 – 1 = 4.

6 × 2.4
A student might estimate an answer between 12 and 18, since 6 × 2 is 12 and 6 × 3 is 18.
Adapted from ADE 2010.

Students must understand and be able to explain that when adding decimals, they add tenths to 
tenths and hundredths to hundredths. When students add in a vertical format (numbers below each 
other), it is important that they write numbers with the same place value below each other. Students 
reinforce their understanding of adding decimals by connecting to prior understanding of adding 
fractions with denominators of 10 and 100 from grade four. They understand that when they add and 
subtract a whole number, the decimal point is at the end of the whole number. Students use various 
models to support their understanding of decimal operations.

Examples                                          M.5.10
1. Model for decimal subtraction.

Solve 4 − 0.3. Explain how you found your solution.

Solution: “Since I’m subtracting 3 tenths from 4 wholes, it would help to divide one of the wholes 
into tenths. The other 3 wholes don’t need to be divided up. I can see there are 3 wholes and 7 
tenths left over, or 3.7.”

2. Use an area model to multiply unit fractions.

Demonstrate that 1
10  of 1

10  is 1
100.

Solution: “If I use my 10×10 grid and set the whole grid equal to 1 square unit, then I can see that 
when each length of the grid is divided into 10 equal parts, each small square must represent a 1

10  × 
1
10  square. But there are 100 of these small squares in the whole, so each little square must have an 
area of 1

100 square units.”
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Examples                                          M.5.10
3. Use an area model to multiply fractions.

Demonstrate that 3
10  of 4

10  is 12
100.

Solution: “Just like in the previous problem, I use my 10×10 grid to represent 1 whole, with 
dimensions 1 unit by 1 unit. If I break up each side length into 10 equal parts, then I can create a 
smaller rectangle of dimensions 3 tenths of a unit by 4 tenths of a unit. It looks something like this:

 
I know that each of the small squares is 1

10  of a square unit, and I can see there are 3 × 4 = 12 of 
these small squares in the rectangle I outlined. This shows the answer is 12

100.” [See also M.5.14.]
3
10

4
10unit

unit

4. Use an area model to multiply decimals.

Show that 2.4 × 1.3 = 3.12.

Solution: “I drew a picture that shows a rectangle with dimensions of 1.3 units by 2.4 units. I know 
how to break up and keep track of smaller units, like tenths and hundredths. The partial products 
appear in my picture.”

2.4
x1.3
.12
.60
.40

+2.00
3.12

1.3

2.4

5. Partitive (“fair-share”) division model applied to decimals.

Solve 2.4 ÷ 4. Justify your answer.

Solution: “My partner and I decided to think of this as fair-share division. We drew 2 wholes and 4 
tenths and decided to break the wholes into tenths as well, since it would be easier to share them. 
When we tried to divide the total number of tenths into 4 equal parts, we got 0.6 in each part.”

0.6 0.6 0.6 0.6
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Examples                                          M.5.10
6. Quotative (“measurement”) division model applied to decimals.

Joe has 1.6 meters of rope. He needs to cut pieces of rope that are 0.2 meters long. How many pieces 
can he cut?

Solution: “We decided to draw a number line segment 2 units long and marked it to show 1.6 meters 
of rope—1 whole meter and 6 tenths of a meter. Since we need to count smaller ropes that are 0.2 
meters in length, we decided to divide the 1 whole into tenths as well. Then it wasn’t too hard to 
count that there are 8 pieces of 0.2-meter-long rope in his 1.6-meter rope.”

1.6m

1m 2m1.6m

1m 2m1.6m

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Domain: Number and Operations—Fractions
Student proficiency with fractions is essential to success in algebra in later grade levels. In grade five, 
a critical area of instruction is developing fluency with addition and subtraction of fractions and mixed 
numbers, including adding and subtracting fractions with unlike denominators. Students also build an 
understanding of multiplication of fractions and of division of fractions in limited cases (unit fractions 
divided by whole numbers and whole numbers divided by unit fractions).

In a video titled Fractions: The Meaning Equivalence, & Comparison, Graham Fletcher (https://gfletchy.
com/progression-videos/) discusses the progression of fractional understanding from grade one 
through grade four. He encourages exploring fractions and partitioning whole objects into fractional 
pieces. His focus is on providing students concrete examples to build conceptual understanding and 
how students can compare fractions to develop a deeper understanding of the importance of the size 
of the whole.

The Fraction Progression chart below provides an overview of the progression of mathematical 
concepts regarding fractions in grades three, four, and five.
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Fraction progression through the intermediate grades

Grade 3 Grade 4 Grade 5

The meaning of fraction

Fractions on the number line

Equivalent fractions Equivalent fractions

Comparing fractions Comparing fractions

Adding and subtracting 
fractions with like 

denominators

Adding and subtracting 
fractions with unlike 

denominators
Multiplying a fraction by a 

whole number
Multiplying and dividing 

fractions

Decimal fractions Multiplication as scaling

Illustrative Mathematics offers a Fractions Progression Module (http://www.illustrativemathematics.org/pages/fractions_progression 
[Illustrative Mathematics 2013k]) that provides an overview of fractions.

Number and Operations - Fractions
Use equivalent fractions as a strategy to add and subtract fractions.
M.5.11
Add and subtract fractions with unlike denominators by replacing given fractions with equivalent 
fractions in such a way as to produce an equivalent sum or difference of fractions with like 
denominators (e.g., 2/3 + 5/4 = 8/12 + 15/12 = 23/12). Instructional Note: In general, a/b + c/d = (ad + 
bc)/bd.

M.5.12
Solve word problems involving addition and subtraction of fractions referring to the same whole, 
including cases of unlike denominators by using visual fraction models or equations to represent the 
problem.  Use benchmark fractions and number sense of fractions to estimate mentally and assess 
the reasonableness of answers (e.g., recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 
3/7 < 1/2).

In grade four, students learned to calculate sums of fractions with like denominators. In grade five, 
students extend work with fractions to add and subtract fractions with unlike denominators by 
replacing given fractions with equivalent fractions with like denominators (M.5.11) [adapted from UA 
Progressions Documents 2013a].
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Students find a common denominator by finding the product of both denominators. For 1
3  + 1

6 , a 
common denominator is 18, which is the product of 3 and 6. This process should be introduced by 
using visual fraction models (area models, number lines, and so on) to build understanding before 
moving into the standard algorithm. Students should first solve problems that require changing 
one of the fractions and progress to changing both fractions. Students understand that multiplying 
the denominators will always give a common denominator but may not result in the smallest 
denominator; however, it is not necessary to find a least common denominator to calculate sums and 
differences of fractions.

To add or subtract fractions with unlike denominators, students need to understand how to create 
equivalent fractions with the same denominators before adding or subtracting, a concept learned in 
grade four. In general, they understand that for any whole numbers a, b, and n, a

b = n x a
n x b (given that n 

and b are non-zero).

Examples                                           M.5.11
2
5 + 7

8

= 2
5 • 8

8 + 7
8 • 5

5

= 16
40 + 35

40

= 51
40

3 1
4 + 1

6

=3 1
4 • 6

6 + 1
6 • 4

4

=3 6
24 + 4

24

=3 2
24  or 3 1

12
Adapted from UA Progression Documents 2013a.

Using a variety of strategies, students make sense of fractional quantities when solving word problems 
involving addition and subtraction of fractions referring to the same whole (M.5.12).

Example                                           M.5.12

Jerry was making two different types of cookies. One recipe called for 3
4  cup of sugar and the other 

called for 2
3  cup of sugar. How much sugar did he need to make both recipes?

Solutions:
Mental estimation (MHM2). A student may say that Jerry needs more than 1 cup of sugar but less 
than 2 cups, because each fraction is larger than 1

2  but less than 1.

Area model to show equivalence (MHM.5). A student may choose to represent each partial cup of 
sugar with an area model, find equivalent fractions, and then add:

3
4  cup of sugar 2

3  cup of sugar

I see that 3
4  of a cup of sugar is equivalent to 9

12  of a cup, 
while of a cup is equivalent to 8

12  of a cup. Altogether, I 
have  of a cup. This is more than one cup, since
17
12  = 5

12  + = 1 5
12 .

Adapted from ADE 2010.
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Instructional Focus
When students meet standard M.5.12, they bring together the threads of fraction equivalence 
(learned in grades three through five) and addition and subtraction (learned in kindergarten through 
grade four) to fully extend addition and subtraction to fractions.

Number and Operations - Fractions
Apply and extend previous understandings of multiplication and division to multiply and divide 
fractions.
M.5.13
Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b).  Solve word 
problems involving division of whole numbers leading to answers in the form of fractions or mixed 
numbers by using visual fraction models or equations to represent the problem (e.g., interpret 3/4 
as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3 and that when 3 wholes are 
shared equally among 4 people each person has a share of size 3/4).

M.5.14
Apply and extend previous understandings of multiplication to multiply a fraction or whole number 
by a fraction. 

a.	Interpret the product (a/b) × q as a number of parts of a partition of q into b equal parts; 
equivalently, as the result of a sequence of operations a × q ÷ b (e.g., use a visual fraction 
model to show (2/3) × 4 = 8/3 and create a story context for this equation; do the same with 
(2/3) × (4/5) = 8/15).  Instructional Note: In general, (a/b) × (c/d) = ac/bd. 

b.	Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the 
appropriate unit fraction side lengths and show that the area is the same as would be found 
by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles and 
represent fraction products as rectangular areas.

In grade four, students multiply a fraction by a whole number. In grade five, students build on this 
understanding to multiply two fractions and divide unit fractions and whole numbers.

In grade five, students connect fractions with division, understanding that 5 ÷ 3 = 5
3  or, more generally, 

a ÷ b = a
b  that for whole numbers a and b, with b ≠ 0 (M.5.13). Students can explain this by working with 

their understanding of division as equal sharing (e.g., Marissa has 5 carrots that she will share with 
three people. 5 ÷ 3 = 5

3 , 1 2
3  or carrots).
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Example                                           M.5.12

Divide 5 objects into three equal shares, showing that 5 ÷ 3 = 5 × 1
3  = 5

3 .

Solution:
“If you divide 5 objects into 3 equal shares, each of the 5 objects should contribute   of itself to each 
share. Thus each share consists of 5 pieces, and each of those pieces is   of an object—so each share 
is 5 × 1

3  = 5
3  of an object.”

Adapted from UA Progressions Documents 2013a

Students solve related word problems and demonstrate their understanding by using concrete 
materials, drawing models, and explaining their thinking when working with fractions in multiple 
contexts. Students read 3

5  as three-fifths and, after experiences with sharing problems, they 
generalize that dividing 3 into 5 equal parts (3 ÷ 5 also written as 3

5 ) results in the fraction 3
5  (3 of 5 

equal parts).

Students apply and extend previous understandings of multiplication to multiply a fraction or whole 
number by a fraction (M.5.14). They multiply fractions efficiently and accurately and solve problems 
in both contextual and non-contextual situations. Students reason about how to multiply fractions 
using fraction strips and number line diagrams. Using an understanding of multiplication by a fraction, 
students develop an understanding of a general formula for the product of two fractions:

a
b  × a

b  = ac
bd .

Examples                                           M.5.14a

When students multiply fractions, such as in the problem 3
5  × 35, they can think of the operation in 

more than one way:
•	 As 3 × (35 ÷ 5), or 3 × 35

5 . (This is equivalent to 3 × ( 3
5 × 35) and expresses the idea in standard 

M.5.14b.)
•	 As (3 × 35) ÷ 5, or 105 ÷ 5. (This is equivalent to 105

5 .)

Teachers may challenge students to write a story problem for this operation:
“Mark’s mother said he could have 3

5  of the peanuts she bought for him and his younger brother to 
share. If she bought a bag of 35 peanuts, how many peanuts does Mark receive?”

Building on previous understandings of multiplication, students find the area of a rectangle with 
fractional side lengths and represent fraction products as areas.
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Examples of the Reasoning Called for in M.5.14b 

Examples
Prior to grade five, students worked with examples 
of finding products as finding areas. In general, the 
factors in a multiplication problem represent the 
lengths of a rectangle and the product represents the 
area.

Student: “By counting the 
side lengths of this 
rectangle and the number 
of square units, I see that 2 
× 3 = 6.”

When students move to examples such as 2 × 2
3 , they 

recognize that one side of a rectangle is less than a 
unit length (in this case, some sides have lengths that 
are mixed numbers). The idea of the picture is the 
same, but finding the area of the rectangle can be a 
little more challenging and requires reasoning about 
unit areas and the number of parts into which the unit 
areas are being divided.

Student: “I made a 
rectangle with sides of 2 
units and 2

3  of a unit. I can 
see that the 2-unit squares 
in the pictures are each 
divided into 3 equal parts 
(representing 1

3 ), with two 
shaded in each unit square 
(4 total). That means that 
the total area of the shaded 
rectangle 4

3  is square
units.”

Finally, when students move to examples such as 2
3  × 

4
5 , they see that the division of the side lengths into 

fractional parts creates a division of the unit area into 
fractional parts as well. Students will discover that 
the fractional parts of the unit area are related to the 
denominators of the original fractions. At right, a 1 × 1 
square is divided into thirds in one direction and fifths 
in another. This results in the unit square itself being 
divided into fifteenths. This reasoning shows why 

1
3 × 1

5  = 1
15 .

Student: “I created a unit 
square and divided it into 
fifths in one direction 
and thirds in the other. 
This allows me to shade a 
rectangle of dimensions 2

3  
and  4

5 . I noticed that 15 
of the new little rectangles 
make up the entire unit 
square, so they must be 
fifteenths ( 1

15 ). Altogether, 
I had 2 × 4 of those 
fifteenths. So my answer is 
8
15 .”

Adapted from ADE 2010.

Instructional Focus
When students meet standard M.5.14, they fully extend multiplication to fractions, making division of 
fractions in grade six (M.6.4) a near target.

3

2

=1

3

2

=1

1
5

1
3

1
3

2
3

1
3

1
5

1
5

4
5

1
5

1
5
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Number and Operations - Fractions
Apply and extend previous understandings of multiplication and division to multiply and divide 
fractions.
M.5.15
Interpret multiplication as scaling (resizing), by: 

a.	Comparing the size of a product to the size of one factor on the basis of the size of the other 
factor, without performing the indicated multiplication.

b.	Explaining why multiplying a given number by a fraction greater than 1 results in a product 
greater than the given number (recognizing multiplication by whole numbers greater than 1 as 
a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a 
product smaller than the given number; and relating the principle of fraction equivalence a/b = 
(n×a)/(n×b) to the effect of multiplying a/b by 1.

M.5.16
Solve real-world problems involving multiplication of fractions and mixed numbers by using visual 
fraction models or equations to represent the problem.

In preparation for grade six work with ratios and proportional reasoning, grade five students interpret 
multiplication as scaling (resizing) [M.5.15] by examining how numbers change as the numbers are 
multiplied by fractions. Students should have ample opportunities to examine the following cases: (a) 
that when multiplying a number greater than 1 by a fraction greater than 1, the number increases; and 
(b) that when multiplying a number greater than 1 by a fraction less than one, the number decreases. 
This is a new interpretation of multiplication that needs extensive exploration, discussion, and 
explanation by students.

Examples                                           M.5.15

Student 1: “I know 3
4  × 7 is less than 7, because I make 4 equal shares from 7, but I only take 3 of 

them ( 3
4  is a fractional part less than 1). If I’m taking a fractional part of 7 that is less than 1, the 

answer should be less than 7.”

Student 2: “I know that 2 3
8  × 8 should be more than 16, because 2 groups of 8 are 16, and 2 3

8  > 2. 
Also, I know the answer should be less than 3 × 8 or 24, since 2 3

8  < 3.”

Student 3: “I can show by equivalent fractions that 3
4  = 3 x 5

4 x 5 . I see that 5
5  = 1, so the result should 

still be equal to 3
4 .”

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Students apply their understanding of multiplication of fractions and mixed numbers to solve real- 
world problems by using visual models or equations (M.5.16).
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Number and Operations - Fractions
Apply and extend previous understandings of multiplication and division to multiply and divide 
fractions.
M.5.17
Apply and extend previous understandings of division to divide unit fractions by whole numbers and 
whole numbers by unit fractions.  Instructional Note:  Students able to multiply fractions in general 
can develop strategies to divide fractions in general, by reasoning about the relationship between 
multiplication and division, but division of a fraction by a fraction is not a requirement at this grade.

a.	Interpret division of a unit fraction by a non-zero whole number and compute such quotients 
(e.g., create a story context for (1/3) ÷ 4 and use a visual fraction model to show the quotient; 
use the relationship between multiplication and division to explain that (1/3) ÷ 4 = 1/12 
because (1/12) × 4 = 1/3).

b.	Interpret division of a whole number by a unit fraction and compute such quotients (e.g., 
create a story context for 4 ÷ (1/5) and use a visual fraction model to show the quotient; use 
the relationship between multiplication and division to explain that 4 ÷ (1/5) = 20 because 20 × 
(1/5) = 4). 

c.	 Solve real-world problems involving division of unit fractions by non-zero whole numbers and 
division of whole numbers by unit fractions by using visual fraction models and equations to 
represent the problem (e.g., How much chocolate will each person get if 3 people share 1/2 lb. 
of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins?).

Students apply and extend previous understandings of division to divide unit fractions by whole 
numbers and whole numbers by unit fractions (M.5.17), a new concept at grade five. In grade six, 
students will extend their grade five learning about division of fractions in simpler cases to the 
general case; division of a fraction by a fraction is not a requirement at grade five. Students in grade 
five use visual fraction models to show the quotient and solve related real-world problems.
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Examples of the Reasoning Called for in M.5.17
Partitive (fair-share) division for dividing a unit fraction by a whole number:
Four students sitting at a table were given 1

3  of a pan of cornbread to share equally. What fraction of 
the whole pan of cornbread will each student get if they share the remaining cornbread equally?

Solution: The diagram shows the 1
3  of a pan of cornbread divided into four equal shares. When 

replicated to fill out the entire pan, it becomes clear that each piece is 1
12  of an entire pan. (If the  

1
3 -sized pieces are each divided into 4 equal pieces, this makes a total of 12 equal pieces of the 

original whole.)

1
3

1
12

Students express their problem with an equation and relate it to their visual model:   ÷ 4 =  , which is 
the same as 1

3  × 1
4  (MHM2, MHM4).

Quotative (measurement) division for dividing a whole number by a unit fraction:
Angelo has 4 pounds of peanuts. He wants to give each of his friends 1

5  of a pound. How many 
friends can receive 1

5  of a pound of peanuts?

1
5 lb

1lb. of peanuts

Solution: The question is asking how many 1
5  -pound groups are found in 4 (whole) pounds. This 

leads us to draw 4 wholes, divide each of them into pieces that are 1
5  of a pound each, and count 

how many of these pieces are shown.

We see that there are 20 (twenty) 1
5  -pound portions in the original 4 pounds. (Alternatively, a 

student may reason that since there are 5 [five] 1
5  -pound portions in each individual pound, there 

are 5 × 4 = 20 total. This reasoning lends itself to proportional reasoning in grades six and seven.)

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.
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Domain: Measurement and Data
In grade five, another critical area of instruction is to develop an understanding of volume. Students 
recognize volume as an attribute of three-dimensional space. They select appropriate units, strategies, 
and tools for solving problems that involve estimating and measuring volume.

Measurement and Data
Convert like measurement units within a given measurement system.
M.5.18
Convert among different-sized standard measurement units within a given measurement system, 
both customary and metric, (e.g., convert 5 cm to 0.05 m) and use these conversions in solving multi-
step, real-world problems.

Students in grade five build on prior knowledge from grade four to express measurements in larger or 
smaller units within a measurement system (M.5.18). This provides an opportunity to reinforce notions 
of place value for whole numbers and decimals and connections between fractions and decimals (e.g., 
2 1

2  meters may be expressed as 2.5 meters or 250 centimeters). Students use these conversions in 
solving multi-step, real-world problems (adapted from UA Progressions Documents 2012a).

Instructional Focus
As grade five students work with conversions in the metric system (M.5.18), they experience practical 
applications of place value understanding and reinforce major grade level work in the cluster 
“Understand the place value system” (M.5.4).

Measurement and Data
Represent and interpret data.
M.5.19
Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8).  Use 
operations on fractions for this grade to solve problems involving information presented in line plots 
(e.g., given different measurements of liquid in identical beakers, find the amount of liquid each 
beaker would contain if the total amount in all the beakers were redistributed equally).

Students continue to extend their understanding of how to represent data, including fractional 
quantities from data in real-world situations. 
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Example M.5.19
The line plot below shows the amount of liquid, in liters, in 10 beakers.  What is the total number of 
liters in the beakers?

Students apply their understanding of operations with fractions and use addition and/or 
multiplication to determine the total number of liters in the beakers. The graph shows the following 
as the total amount of liquid (in liters):

3 × 1
8  + 3 × 1

4  + 4 × 1
2  = 3

8  + 3
4  + 4

2  = 25
8 

Liquid in Beakers

Amount of Liquid (in liters)

0 1

x x x
x x x
x x x

x

1
8 

1
4 

1
2

2
3

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Instructional Focus
As students solve real-world problems using operations on fractions based on information 
presented in line plots, they reinforce and support major grade level work in the domain “Number 
and Operations—Fractions”.
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Measurement and Data
Geometric measurement: understand concepts of volume and relate volume to multiplication and 
to addition.
M.5.20
Recognize volume as an attribute of solid figures and understand concepts of volume measurement. 

a.	A cube with side length 1 unit, called a “unit cube,” is said to have “one cubic unit” of volume 
and can be used to measure volume. 

b.	A solid figure which can be packed without gaps or overlaps using b unit cubes is said to have 
a volume of b cubic units.

M.5.21
Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units.

M.5.22
Relate volume to the operations of multiplication and addition and solve real-world and 
mathematical problems involving volume.

a.	Find the volume of a right rectangular prism with whole-number side lengths by packing 
it with unit cubes and show that the volume is the same as would be found by multiplying 
the edge lengths, equivalently by multiplying the height by the area of the base.  Represent 
threefold whole-number products as volumes (e.g., to represent the associative property of 
multiplication). 

b.	Apply the formulas V = l × w × h and V = B × h for rectangular prisms to find volumes of right 
rectangular prisms with whole number edge lengths in the context of solving real-world and 
mathematical problems. 

c.	Recognize volume as additive and find volumes of solid figures composed of two non-
overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, 
applying this technique to solve real-world problems.

Students develop an understanding of volume and relate volume to multiplication and addition. 
Volume introduces a third dimension, a significant challenge to some students’ spatial structuring 
and also a complexity in the nature of the materials measured (M.5.20). Solid units are “packed,” such 
as cubes in a three-dimensional array, whereas a liquid “fills” three-dimensional space, taking the 
shape of the container. “Packing” volume is more difficult than area concepts in early grades. It may be 
simpler for students to think of volume as the number of cubes in n layers with a given area than to 
think of all three dimensions (adapted from PARCC 2012 and UA Progressions Documents 2012a).

Students learn about a unit of volume, such as a cube with a side length of 1 unit, called a unit 
cube (M.5.20). They pack cubes (without gaps) into right rectangular prisms and count the cubes to 
determine the volume or build right rectangular prisms from cubes and see the layers as they build.
(M.5.21). Students may also build up a rectangular prism with cubes to see the volume; it is easier to 
see the cubes in this method.
 



31

In grade three, students measure and estimate liquid volume and work with area measurement.
In grade five, the concept of volume can be developed by having students extend their prior work with 
area by covering the bottom of a cube with a layer of unit cubes and then adding layers of unit cubes 
on top of the bottom layer. For example:

•	

one layer five layers
fill the box

(3 x 2) represents the first layer
•	 (3 x 2) x 5 represents the number of 3 x 2 layers
•	 (3 x 2) + (3 x 2) + (3 x 2) + (3 x 2) +(3 x 2) = 6+ 6+ 6+ 6+ 6 = 30 

(6 represents the area of one layer)
•	 30 represents the volume of the prism in cubic units

Adapted from teh KATM 2012, 5th Grade Flipbook.

Students can explore the concept of volume by packing containers with cubic units (cubes) to find 
the volume or by building up stacks of cubes without the containers. Students may also use drawings 
or interactive computer software to simulate this packing process. It is helpful for students to use 
concrete manipulatives before moving to pictorial representations.

Students measure volume by packing rectangular prisms with cubes and looking at the relationship 
between the total volume and the area of the base. They derive the volume formula (volume equals 
the area of the base times the height) and explore how this idea would apply to other prisms. 
Students use the associative property of multiplication and decomposition of numbers using factors 
to investigate rectangular prisms with a given number of cubic units (M.5.22).

In subsequent grades, as students continue to develop formulas for area and volume, it becomes 
important for them to differentiate between the formula for the area of a quadrilateral (area = 
the length of the base x the length of the height) and the formula for volume they derive in Grade 
5. Students see the formula for the area of a quadrilateral written as A = bh. As a means to avoid 
confusion, it may be helpful to introduce the formula for volume as V = Bh where B stands for the 
area of the base. This can serve to help students better appreciate the difference between the volume 
formula and the area formula, A = bh where b stands for the length of the base. In later grades as 
students derive formulas for the volume of a prism or cylinder, they will find that the volume can 
again be determined by finding the product of the area of the base and the height of the figure 
(V = Bh). Rather than simply using the term base in working with these formulas, the careful and 
intentional use of the phrases length of the base and area of the base can serve to prevent confusion.
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Examples M.5.22
Teachers give 24 “unit” cubes to students and ask them to make as many rectangular prisms as 
possible. Students build the prisms and record the dimensions as they build. It is important to note 
that there is a constant volume in this activity and that the product of the length, width, and height 
of each prism will always be 24.

Length Width Height
1 2 12
2 2 6
4 2 3
8 2 1

Note: There are other possible combinations for a volume of 24.

Teachers ask students to determine the volume of concrete 
needed to build the steps shown in the diagram at right 
(M.5.22c).

Students could multiply 2’ x 3’ x 3’ = 18 ft.3 for the large block. 
Then multiply 2’ x 2’ x 1.5’ = 6 ft.3 for the small block. Combine 
the volumes together for the composite shape to arrive at 24 
ft.3 total.

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Instructional Focus
When students show that the volume of a right rectangular prism is the same as would be found by 
multiplying the side lengths (M.5.22), they also develop important mathematical practices such as 
looking for and expressing regularity in repeated reasoning (MHM8). They attend to precision (MHM6) 
as they use correct length or volume units, and they use appropriate tools strategically (MHM5) as 
they understand or make drawings to show these units.

1.5 ft.

5 ft.

3 ft.

3 ft.
2 ft.
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Domain: Geometry
In grade five, students build on their previous work with number lines to use two perpendicular 
number lines to define a coordinate system (M.5.23). Students gain an understanding of the structure 
of the coordinate system. They learn that the two axes make it possible to locate points on a 
coordinate plane and that the names of the two axes and the coordinates correspond (i.e., x-axis and 
x-coordinate, y-axis and y-coordinate). This is the first time students work with coordinate planes, and 
at grade five this work is limited to the first quadrant.

Measurement and Data
Graph points on the coordinate plane to solve real-world and mathematical problems.
M.5.23
Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the 
intersection of the lines, the origin, arranged to coincide with the 0 on each line and a given point in 
the plane located by using an ordered pair of numbers, called its coordinates. Understand that the 
first number indicates how far to travel from the origin in the direction of the horizontal axis (x-axis) 
and the second number indicates how far to travel in the direction of the vertical axis (y-axis), with 
the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and 
x-coordinate, y-axis and y-coordinate).

M.5.24
Represent real-world mathematical problems by graphing points in the first quadrant of the 
coordinate plane and interpret coordinate values of points in the context of the situation.

Students need opportunities to create a coordinate grid, connect ordered pairs of coordinates to 
points on the grid, and describe how to get to the location. For example, initially, the ordered pair (2, 
3) could be described as a distance “2 from the origin along the ß-axis and then 3 units up from the 
y-axis” or “right 2 and up 3”. Another example follows.

Example                                           M.5.23
Students might use a classroom-size coordinate system to physically locate coordinate points. For 
example, to locate the ordered pair (5, 3), students start at the origin point (0,0), then walk 5 units 
along the x-axis to find the first number in the pair (5), and then walk up 3 units for the second 
number in the pair (3). They continue this process to locate all the points in the following graph. 
Students recognize that ordered pairs name points in the plane.
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Example                                           M.5.23
Students graph and label the points below in a 
coordinate system.

A (0, 0)
B (5, 1)
C (0, 6)
D (2, 6)
E (6, 2)
F (4, 1)

Students represent real-world and mathematical problems by graphing points in the first quadrant of 
the coordinate plane (M.5.24).

Example                                          M.5.24
Use the following graph to determine how much 
allowance Jack makes after doing chores for 
exactly 10 hours.

Solution: “I can see that when I look up from the
x-coordinate on the horizontal axis, the 
y-coordinate that matches up to it is 20. So Jack 
makes $20 if he does 10 hours of chores.”

Adapted from ADE 2010 and KATM 2012, 5th Grade Flipbook.

Instructional Focus
Students can connect their work with numerical patterns (M.5.3) to form ordered pairs, graph these 
ordered pairs in the coordinate plane (M.5.23–24), and then use this model to make sense of and 
explain the relationships in the numerical patterns they generate. This work can help prepare 
students for future work with functions and proportional relations in the middle grades (adapted 
from Charles A. Dana Center 2012).
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Common Misconceptions   
	» Students may think the order in plotting a coordinate point is unimportant. To address this 

misconception, teachers can ask students to plot points with the coordinates switched. For 
example, referring to the graph from the previous example about Jack’s allowance, students 
might locate point (4, 8) and then discuss whether changing the order to (8, 4) might change 
the meaning of his earnings on the graph. Teachers should provide opportunities for students 
to realize the importance of direction and distance—for example, by having a student create 
directions for other students to follow as they plot points.

In prior years, students described and compared properties of two-dimensional shapes and built, 
drew, and analyzed these shapes. Grade five students broaden their understanding to reason about 
the attributes (properties) of two-dimensional shapes and to classify these shapes in a hierarchy 
based on properties (M.5.26).

Geometry
Classify two-dimensional figures into categories based on their properties.
M.5.25
Understand that attributes belonging to a category of two-dimensional figures also belong to all 
subcategories of that category (e.g., all rectangles have four right angles and squares are rectangles, 
so all squares have four right angles). 

M.5.26
Classify two-dimensional figures in a hierarchy based on properties.

Geometric properties include properties of sides (parallel, perpendicular, congruent), properties of 
angles (type, measurement, congruent), and properties of symmetry (point, line). For example, students 
conclude that all rectangles are parallelograms, because all rectangles are quadrilateralsw with two 
pairs of opposite sides that are parallel and of equal length. In this way, students relate particular 
categories of shapes as subclasses of other categories (M.5.25); see the figure below.

Quadrilaterals

Rhombuses

Squares

Rectangles

Trapezoids

(Rhomboids)

Parallelograms

Source: US Progressions Documents 2010c and KATM 2012, 5th Grade Flipbook.
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Essential Learning for the Next Grade
In kindergarten through grade five, the focus is on the addition, subtraction, multiplication, and 
division of whole numbers, fractions, and decimals, with a balance of concepts, procedural skills, and 
problem solving. Arithmetic is viewed as an important set of skills and also as a thinking subject that, 
done thoughtfully, prepares students for algebra. Measurement and geometry develop alongside 
number and operations and are tied specifically to arithmetic along the way. Multiplication and 
division of whole numbers and fractions are an instructional focus in grades three through five.

To be prepared for grade six mathematics, students should be able to demonstrate they have acquired 
certain mathematical concepts and procedural skills by the end of grade five and have met the fluency 
expectations for the grade. For students in grade five, the expected fluency is to multiply multi-digit 
whole numbers (with up to four digits) using the standard algorithm (M.5.8). These fluencies and the 
conceptual understandings that support them are foundational for work in later grades.

Mastery of the following concepts, skills, and understandings is of particular importance for student 
success in grade six and the continued development of algebra readiness:

	» understand the place value system (M.5.4-M.5.7);
	» perform operations with multi-digit whole numbers and with decimals to hundredths 

(M.5.8-M.5.10);
	» use equivalent fractions as a strategy to add and subtract fractions (M.5.11-M.5.12);
	» apply and extend previous understandings of multiplication and division to multiply and divide 

fractions (M.5.13-M.5.17);
	» understand geometric measurement, including concepts of volume and how to relate volume to 

multiplication and addition (M.5.20-M.5.22);
	» graph points on the coordinate plane to solve real-world and mathematical problems 

(M.5.23-M.5.24).

Fractions
Student proficiency with fractions is essential to success in later grades. By the end of grade five, 
students should be able to add, subtract, and multiply any two fractions and understand how to divide 
fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit 
fractions) (M.5.14).

Students should understand fraction equivalence and use their skills to generate equivalent fractions 
as a strategy to add and subtract fractions that have unlike denominators, including mixed fractions. 
Students should use these skills to solve related word problems. This understanding brings together 
the threads of fraction equivalence (emphasized in grades three through five) and addition and 
subtraction (emphasized in kindergarten through grade four) to fully extend addition and subtraction 
to fractions.

By the end of grade five, students know how to multiply a fraction or whole number by a fraction. 
Based on their understanding of the relationship between fractions and division, students divide any 
whole number by any non-zero whole number and express the answer in the form of a fraction or 
mixed number. Work with multiplying fractions extends from students’ understanding of the operation 
of multiplication. For example, to multiply a

b  × q (where q is a whole number or a fraction), students 
can interpret a

b  × q as meaning a parts of a partition of q into b equal parts. This interpretation leads 
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to a product that is less than, equal to, or greater than, depending on whether a
b  < 1, a

b  = 1, or a
b  > 1, 

respectively. In cases where a
b  < 1, the result of multiplying contradicts earlier student experience with 

whole numbers, so this result needs to be explored, discussed, explained, and emphasized.

Grade five students divide a unit fraction by a whole number or a whole number by a unit fraction. By 
the end of grade five, students should know how to multiply fractions to be prepared for division of a 
fraction by a fraction in grade six.

Decimals
In grade five, students integrate decimal fractions more fully into the place value system as they 
learn to read, write, compare, and round decimals. By thinking about decimals as sums of multiples 
of base-ten units, students extend algorithms for multi-digit operations to decimals. By the end of 
grade five, students understand operations with decimals to hundredths. Students should understand 
how to add, subtract, multiply, and divide decimals to hundredths by using models, drawings, and 
various methods, including methods that extend from whole numbers and are explained by place 
value meanings. The extension of the place value system from whole numbers to decimals is a major 
accomplishment for a student that involves both understanding and skill with base-ten units and 
fractions. Skill and understanding with adding, subtracting, multiplying, and dividing multi-digit 
decimals will culminate in fluency with the standard algorithm in grade six.

Fluency with Whole-Number Operations
In grade five, the fluency expectation is to multiply multi-digit whole numbers using the standard 
algorithm: one-digit numbers multiplied by a number with up to four digits and two-digit numbers 
multiplied by two-digit numbers. Students also extend their grade four work in finding whole- number 
quotients and remainders to the case of two-digit divisors. Skill and understanding of division with 
multi-digit whole numbers will culminate in fluency with the standard algorithm in grade six.

Volume
Students in grade five work with volume as an attribute of a solid figure and as a measurement 
quantity. They also relate volume to multiplication and addition. Students’ understanding and skill 
with this work support a learning progression that leads to valuable skills in geometric measurement 
in middle school.
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